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1 Background

We consider the (somewhat popular) two person complete information game
which is started on an empty finite square lattice (in general, say n × n) of
points. Players take turns to make moves,- drawing lines between two adjacent
unconnected points. If a player completes a unit square by making a move, he
’owns’ that square and gains an extra move (and this can go on). When the
whole grid is filled, the one who owns more no. of squares wins.

The initial interest was to get some idea about the winning strategy, if any.
It seems that as n grows, getting a general strategy would be difficult. Another
approach is interesting. The practical initial strategy of any player for his move
would be to ensure that his opponent can’t gain any square in his next move.
However, obviously, at some point of playing, one among them would find him-
self in a position that whatever move he gives, his opponent will gain at least
one square in the next move. We call these type of positions in the grid critical
positions. We can also check that if we can characterize the critical positions
in some way - maybe some equivalence relations, maybe they can be changed
into one another by some given set of standard ’operations’, and so on.

2 General Strategies

Here are some general strategies that may come useful in course of work.

1. Converting any position in the grid into an equivalent lattice an-
imal : We replace each square by a point, each vertical line between two
squares in the grid by a horizontal line between the corresponding points,
and similarly, each horizontal line by an equivalent vertical one (the ex-
ternal lines are assumed to connect to a common point). For example, the
following critical position and critical lattice graph are equivalent :
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2. Connection matrices : The horizontal and vertical connections form
two binary matrices, say H and V , respectively. In the equivalent n × n
point-grid setup, H is n × (n + 1) and V is (n + 1) × n.For example, in
the above point-grid, the matrices are -

• Here also is an interesting proposition, made from observing ran-
domly (by hand) generated critical positions :

Proposition 1 For critical positions, HV is singular.

3 An alternative problem

3.1 Approach

As an alternative problem we first consider the ’non-practical’ scenario, where
players don’t play to win. In this case, the first square can be completed by
a minimum of 4 lines, and can be dragged till our critical position. Naturally,
we can look for the underlying distribution from simulated data. We wrote a C
program that, given n puts a square randomly in the n× n grid, and randomly
keeps on putting lines in the grid until a plausible exit condition is satisfied. For
making things scale-free, we look at the distribution of number of lines required
to complete first square divided by n2.

In the same way we can look for the distribution of (proportion of) lines
required to get 2nd square after getting the first square, and in general (propor-
tion of) lines needed to get r-th square after completing (r − 1)th square. We
modified our program to suit this need, and simulated 10000 datapoints each
for n = 10, 15, ..., 245 and r = 1, 2, 5, 7, 10, 12, 15, 18, 21, 25, 27, 30.

3.2 Results

1. The data were plotted for different n and r and from the logarithm plot it
seems that the distributions are exponential (β distribution with suitable
parameters is also a possibility, because of the nature of the data, i.e.
they can only take values in [0, 1]) and they approach the random variable
having probability 1 at 0 as n and r grow to infinity.

2. The expected no. of lines to complete r-th square after getting (r − 1)th

square is expected to be a function of n and r, say E(n, r). So, for given n,
the expectation is a function of r, say En(r). For fixed n, the data means
were plotted vs. r, which naturally show a decreasing trend. Regression
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of the double log data (i.e. log(En(r)) vs. log r) was found significant (all
p-values are of order ≤ 10−8), indicating a power law structure, i.e.

En(r) = A0r
a1

3. To get E(n, r) from here, A0 and a1 as functions of n have to be deter-
mined. Quadratic regression of A0 on n seems a good fit. From the plot of
a1 vs. n, it seems that the values decrease to a limit as n→∞. Proposal
of a plausible model for fitting the plot is expected.

Figure 1: Plot of gradient term (a1) vs. n
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